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Abstract. A model study of the characteristic signatures of carrier-correlation effects on the excitonic
differential absorption spectra in semiconductors is presented. Using an effectively one-dimensional tight-
binding system Coulomb-induced carrier-correlations up to third-order in the optical field are treated
without additional approximations. To illustrate the influence of the different many-body contributions
excitonic differential absorption spectra are computed for various polarizations and pump-probe time
delays. The simultaneous influence of energetic disorder and correlations on the differential absorption
spectra is discussed. Also presented are numerical results for the case when the semiconductor system
is placed inside a microcavity in the strong-coupling regime. It is shown that the correlations induce
characteristic signatures in the normal mode spectra.

PACS. 71.35.Cc Intrinsic properties of excitons; optical absorption spectra – 42.50.Md Optical transient
phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nuta-
tion, and self-induced transparency – 78.66.-w Optical properties of specific thin films, surfaces, and
low-dimensional structures: superlattices, quantum well structures, multilayers, and microparticles

1 Introduction

The recent progress in experimental techniques and res-
olution requires an improved level of theoretical analysis
of the nonlinear optical response of semiconductors and
semiconductor nanostructures. In particular, it is interest-
ing and necessary to investigate Coulomb-induced carrier
correlations, i.e. terms in the many-body hierarchy which
go beyond the time-dependent Hartree-Fock approxima-
tion [1–14]. In particular the polarization-dependence of
the nonlinear optical response has been interpreted in
terms of excitation-induced dephasing processes [1,2]. Fur-
thermore, signatures of bound [3,6–12] and unbound two-
exciton states [3] were investigated both theoretically and
experimentally.

Previous work on higher-order correlation effects has
often focussed on time-domain four-wave mixing, where
the field emitted into a background free direction is an-
alyzed, see reference [3] and references therein. Only
few publications exist which study the effects of carrier-
correlations on pump-probe type (differential absorp-
tion/transmission) experiments [5,14–18] and a detailed
microscopic theoretical study on the influence of carrier-
correlations on polarization-dependent differential absorp-
tion spectra is still missing. As far as the description of
disorder effects on the χ(3)-processes beyond the Hartree-
Fock level is concerned, only some phenomenological
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approaches are available [12,19], but no consistent micro-
scopic treatment has been reported so far.

The development of high-quality microcavities has
opened up new possibilities for studying light-matter in-
teraction. In the so-called strong-coupling regime, the
splitting of the eigenstates of the absorber and cavity
modes (normal-mode splitting), has been predicted [20]
and observed in atomic [21] and semiconductor [22]
systems. The nonlinear saturation of excitonic normal-
mode coupling after femtosecond-pulse excitation has
been studied [23,24], and time-integrated [25] or time-
resolved [26] four-wave mixing have been analyzed. Re-
cently, polarization-dependent changes of the normal
mode splitting have been observed in pump-probe type
differential reflection experiments [27].

In this paper we present a detailed analysis of carrier-
correlation effects on differential absorption spectra within
the coherent χ(3)-limit [3,4,14]. The energies and oscilla-
tor strengths of bound and unbound two-exciton states
are computed consistently on a microscopic basis. Fur-
thermore, we analyze disorder effects by treating the in-
fluence of disorder and correlations simultaneously. The
dependence of the differential absorption spectra on the
polarization geometry of the incident pulses and their
time-delay is discussed and the effects induced by ener-
getic disorder are analyzed for the polarization-dependent
differential absorption spectra. Finally, the configuration
of the excitonic system inside a microcavity is analyzed
for the case where the exciton energy is in resonance
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with the optical cavity mode. The polarization dependence
of the normal mode splitting [27] and additional signatures
in the pump-probe reflection spectra are discussed.

The paper is organized as follows: In Section 2 the
theoretical approach is presented and the general equa-
tions determining the optical response within the coher-
ent χ(3)-limit are given. In Section 3 the one-dimensional
model is introduced for which the coupled equations are
numerically evaluated. Results for excitonic differential
absorption spectra including carrier-correlations are pre-
sented and discussed in Section 4. Important features of
the numerical results are analyzed on the basis of an ana-
lytical solvable model system introduced in Appendix A.
The consequences of energetic disorder are discussed in
Section 5. Numerical results for the differential reflection
spectra of a microcavity are presented in Section 6. Our
results are summarized in Section 7.

2 Theoretical approach

We use the Hamiltonian:

H = H0 +HC +HI, (1)

where H0 is the single-particle Hamiltonian, HC the
Coulomb interaction, and HI the interaction with a clas-
sical electric field.

The single-particle Hamiltonian H0 reads:

H0 =
∑
ijc

T cija
c+
i acj +

∑
ijv

T vija
v+
i avj . (2)

Here, i and j refer to real-space sites, and c (v) label the
conduction (valence) bands. ac+i (acj) creates (destroys)
an electron at site i (j) in band c, and av+

i (avj ) creates
(destroys) a hole at site i (j) in band v. The diagonal
terms of the matrices T contain the electronic site energies
and the couplings between the sites define the off-diagonal
matrix elements.

We use the Coulomb Hamiltonian HC in the form:

HC =
1
2

∑
ijcvc′v′

(ac
′+
i ac

′

i − av
′+
i av

′

i )Vij(ac+j acj − av+
j avj ),

(3)

where Vij describes the monopole-monopole [28] Coulomb
interactions between particles at sites i and j. The dipole
interaction of the electronic system with a classical electric
field is given by:

HI = −E(t) ·P = −E(t) ·
∑
ijvc

(µvcij a
v
i a
c
j + (µvcij )∗ac+j av+

i ),

(4)

where µ is the matrix element for the optical transition
between the valence and conduction bands and P is the
optical interband polarization.

Using the total Hamiltonian H, the equation of motion
of the interband coherence pv1c2

12 = 〈av1
1 a

c2
2 〉 is obtained as:

− i∂tpv1c2
12 = −

∑
j

T c2jp
v1c2
1j −

∑
i

T vi1p
v1c2
i2 + V12p

v1c2
12

−E(t) · [(µv1c2
12 )∗ −

∑
jc

(µv1c
1j )∗f cc2j2 −

∑
iv

(µvc2i2 )∗fvv1
i1 ]

+
∑
ava

Va1〈avaa av1
1 a

va+
a ac22 〉 −

∑
ava

V2a〈av1
1 a

va
a a

c2
2 a

va+
a 〉

+
∑
aca

Va1〈aca+
a av1

1 a
ca
a a

c2
2 〉 −

∑
aca

V2a〈av1
1 a

ca+
a ac22 a

ca
a 〉. (5)

Here we have introduced the electron and hole popu-
lations and intraband coherences which are defined as
f cc2j2 = 〈ac+j ac22 〉 and fv1v

1i = 〈av1+
1 avi 〉, respectively. The

four-point correlation functions represent the first step
of the infinite hierarchy of many-particle correlations in-
duced by the Coulomb interaction.

In this paper, we consider the coherent limit in which
dephasing processes due to scattering with other quasi-
particles is neglected. Furthermore, we assume relatively
weak excitation intensities and include only terms which
contribute to the optical response up to third-order in the
optical field. Within these assumptions the electron and
hole populations and coherences do not have to be treated
as independent variables but can be expressed via the in-
terband coherences p using [4,14]∑

ava

pvac2a2 (pvac1a1 )∗ = f c1c212 , (6)

and ∑
aca

pv1ca
1a (pv2ca

2a )∗ = fv1v2
12 . (7)

Similarly, the four-point terms appearing in equation (5)
can written as [4,14]

〈ava+
a av1

1 a
va
a a

c2
2 〉 =

∑
bcb

〈av1
1 a

cb
b a

va
a a

c2
2 〉(pvacbab )∗. (8)

Applying this decoupling scheme to all terms in
equation (5) the optical response up to χ(3) can be ex-
pressed using two transition-type quantities. These are
the interband coherences pv1c2

12 related to single-excitons
and σv1vcc2

1234 = 〈av1
1 a

v
2a
c
3a
c2
4 〉, which describes two-exciton

excitations [3,4,14]. In order to be able to analyze pure
correlation effects, which go beyond the time-dependent
Hartree-Fock approximation [29], it is advantageous to re-
move the uncorrelated parts from the four-point quantities
σ, i.e. to define [3]

σ̄v1vcc2
1234 = σv1vcc2

1234 − pv1c2
14 pvc23 + pv1c

13 p
vc2
24 . (9)

This procedure results in closed equations of motion for
the single-exciton amplitude pvc12 and the two-exciton am-
plitude Bv1cvc2

1324 ≡ −σ̄v1vcc2
1234 , which completely determine
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the optical response within the coherent χ(3) limit [3,4,14].
The equation of motion for p is then obtained as:

− i ∂tpvc12 = −
∑
j

T c2jp
vc
1j −

∑
i

T vi1p
vc
i2 + V12p

vc
12

+
∑
abv′c′

(Va2 − Va1 − Vb2 + Vb1)[(pv
′c′

ba )∗pv
′c
b2 p

vc′

1a

− (pv
′c′

ba )∗pv
′c′

ba pvc12 − (pv
′c′

ba )∗Bv
′c′vc
ba12 ]

+ E(t) · [(µvc12)∗ −
∑
abv′c′

((µvc
′

1b )∗(pv
′c′

ab )∗pv
′c
a2

+ (µv
′c
b2 )∗(pv

′c′

ba )∗pvc
′

1a )]. (10)

Here, the first line gives the homogeneous part of the equa-
tion of motion, which includes the electronic energies and
couplings (T ) and the electron-hole Coulomb attraction
(V12). The following lines describe different types of inho-
mogeneities. In addition to the linear source term given
by the external field times the dipole transition matrix
element, E(t) · µ∗, in the coherent χ(3) limit there are
the optical nonlinearities arising from Pauli-blocking (also
called phase-space filling) (µ∗Ep∗p) and from the many-
body Coulomb interaction. The latter include the first-
order Coulomb contribution (V p∗pp) and the correlation
contribution (V p∗B) [3]. The nonlinear response can be
written as a sum over the contributions from these three
types of optical nonlinearities, which makes it possible to
investigate them separately [3,5,13].

The second term ∝ pv
′c′∗
ba pv

′c′

ba pvc12 in line two of equa-
tion (10) looks like an energy renormalization. Using the
typical selection rules for heavy-hole to conduction elec-
tron (hh-e) transitions [3,9], this term, which is of first-
order in the Coulomb interaction, introduces a coupling
between the spin subspaces. This term vanishes only in
a homogeneous system, in inhomogeneous, for example
disordered systems, it is finite and contributes to the non-
linear response.

The equation of motion for B is obtained as

− i ∂tBv
′c′vc
ba12 = −

∑
i

(T c2iB
v′c′vc
ba1i + T vi1B

v′c′vc
bai2

+ T caiB
v′c′vc
bi12 + T vibB

v′c′vc
ia12 )

+ (Vba + Vb2 + V1a + V12 − Vb1 − Va2)Bv
′c′vc
ba12

− (Vba + V12 − Vb1 − Va2)pvc
′

1a p
v′c
b2

+ (V1a + Vb2 − Vb1 − Va2)pv
′c′

ba pvc12. (11)

The first three lines in equation (11) constitutes the ho-
mogeneous part of the equation of motion, which includes
the electronic energies and couplings (T ) as well as the six
possible Coulomb-interactions between the two electrons
and the two holes. The last two lines in equation (11) rep-
resent the inhomogeneities. Since the uncorrelated first-
order Coulomb contributions have been removed from B
it is purely driven by sources which include the many-body
interaction V [3,5], i.e. by terms proportional to V pp.

The total interband polarization P measured in an optical
experiment is:

P =
∑
ijvc

µvcij p
vc
ij . (12)

Equations (10, 11) fully determine the interband polar-
ization P within the coherent χ(3) limit [3,4,13,14]. For
a spatially homogeneous system the complexity of solv-
ing these equations can be reduced, since in this case the
center of mass motion is irrelevant. Then p and B depend
only on the relative motion of the particles which leads to
the k-space equations in [3]. However, in spatially inho-
mogeneous (for example disordered) systems the complete
equations (10, 11) have to be solved. Furthermore these
equations can be easily extended to include propagation
effects [30].

Instead of removing the uncorrelated parts from the
four-point functions, one can also derive equations which
describe the optical response up to χ(3) using the original
four-point functions [14]; i.e. we can use

B̃v1cvc2
1324 ≡ −σv1vcc2

1234 ≡ −〈av1
1 a

v
2a
c
3a
c2
4 〉. (13)

This results in the following equations for p and B̃:

− i ∂tpvc12 = −
∑
j

T c2jp
vc
1j −

∑
i

T vi1p
vc
i2 + V12p

vc
12

−
∑
abv′c′

(Va2 − Va1 − Vb2 + Vb1)[(pv
′c′

ba )∗B̃v
′c′vc
ba12 ]

+ E(t) · [(µvc12)∗ −
∑
abv′c′

((µvc
′

1b )∗(pv
′c′

ab )∗pv
′c
a2

+ (µv
′c
b2 )∗(pv

′c′

ba )∗pvc
′

1a )] (14)

and

− i ∂tB̃v
′c′vc
ba12 = −

∑
i

(T c2iB̃
v′c′vc
ba1i + T vi1B̃

v′c′vc
bai2

+ T caiB̃
v′c′vc
bi12 + T vibB̃

v′c′vc
ia12 )

+ (Vba + Vb2 + V1a + V12 − Vb1 − Va2)B̃v
′c′vc
ba12

− E(t) ·
[

(µvc12)∗pv
′c′

ba + (µv
′c′

ba )∗pvc12

− (µvc
′

1a )∗pv
′c
b2 − (µv

′c
b2 )∗pvc

′

1a

]
. (15)

Equations (14, 15) are equivalent to equations (10, 11),
i.e. solving either one of these equation pairs gives ex-
actly the same result (which has also been verified nu-
merically). What is, however, different, is the appearance
of the many-body Coulomb-induced optical nonlinearities
in the equation of p. Whereas in equations (10, 11) the
Coulomb terms are split into a first-order (V p∗pp) and a
correlation part (V p∗B), no such distinction appears in
equations (14, 15), but all many-body nonlinearities are
proportional to V p∗B̃.
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The comparison of equations (10, 11) and equa-
tions (14, 15) indicates that strong compensations between
the first-order and the higher-order Coulomb-correlations
can be expected. Examples of such cancellations have
been reported in reference [23] and can be confirmed
by our analytical results in Appendix A and numerical
results presented below. As another difference between
equations (11, 15), B is driven by inhomogeneous terms
proportional to V pp [3] whereas B̃ is driven by µEp [14].
Therefore the phenomenological approaches used to in-
clude two-exciton states in references [9,11,12] are more
closely related to equations (14, 15).

At this point it is instructive to compare the dis-
cussed approach with the second-order Born approxima-
tion (SBA) for the Coulomb interaction [3,23]. The SBA
has been successfully applied for excitation conditions
where a correlated electron-hole plasma dominates the
nonlinear response. In this case, the SBA is valid beyond
the χ(3)-regime and includes also the effect of screening of
the Coulomb interaction. For a comparison with the treat-
ment of excitonic and biexcitonic correlations discussed in
this paper, the SBA has to be combined with a Markov
approximation, screening has to be neglected, and only
terms up to third order in the optical field have to be re-
tained. At this level, the same equations are obtained if
one neglects the Coulomb-terms in the homogeneous part
of the equation for B, i.e. the third line in equation (11),
and solves the resulting equation in Markov approxima-
tion. Since the remaining driving terms in the B-equation
are proportional to V and B entering in equation (10)
is multiplied with V , the resulting contributions in the
polarization equation are of second-order in the Coulomb
potential.

Hence, the SBA does not include bound two-exciton
states and the unbound two-exciton continuum which can
strongly influence the optical response if excitons are reso-
nantly excited and plasma excitation is avoided. Further-
more, the Markov approximation appears to be critical
under these conditions. In the numerical treatment dis-
cussed in this paper, contributions of two-exciton states
are fully included on the χ(3)-level via the Coulomb-terms
appearing in the homogeneous part of the equations for
B and the Markov approximation is not used since, in ad-
dition to the polarization equation for p, an independent
differential equation for B is solved.

3 One-dimensional model

To keep the numerical complexity within reasonable lim-
its, in this paper we concentrate on a one-dimensional
model system. Here, the electronic coupling is described
in the tight-binding approximation, i.e. T c,vij = 0 for
|i − j| > 1. The diagonal parts T c,vii = εc,v = Eg/2 are
the energies of the electron and hole sites, respectively.
Without disorder these energies are taken to be site in-
dependent and equal to half the band-gap energy Eg. In
our study of disorder effects we introduce uncorrelated
Gaussian diagonal disorder where the site energies, which

vary in an uncorrelated way, are chosen from independent
Gaussian distributions.

The tight-binding coupling is described by the off-
diagonal elements T c,vi,i+1 = T c,vi+1,i = Jc,v. For the elec-
tronic coupling we use Jc = 15 meV and for the (heavy-)
hole coupling Jv = 1.5 meV. The Coulomb-interaction is
given by a regularized potential:

Vij = U0
d

|i− j|d+ a0
,

where d is the distance between the sites and U0 and a0 are
parameters characterizing the strength of the interaction
and the spatial variation. In our numerical study we use
U0 = 15 meV, a0 = 25 Å, and d = 50 Å. Such parametriza-
tions of the Coulomb potential given by equation (3) have
been used in describing semiconductor quantum wires [31],
in simplified descriptions of superlattices [32], and in an-
alyzing disorder-induced effects in one-dimensional semi-
conductors [33].

The numerical calculations are performed for a system
consisting of 10 sites [34] using periodic boundary con-
ditions. With the above given parameters we obtain an
exciton binding energy of 15.1 meV. Furthermore, phe-
nomenological decay times are inserted into the equa-
tions of motion. For p we use γ−1

p = 3 ps and for B

γ−1
B = 1.5 ps, which yields a homogeneous broadening

much smaller than the energy difference between the rel-
evant states.

For simplicity we neglect the light-holes and con-
sider two valence and two conduction bands. For the va-
lence bands we include the two degenerate heavy-hole
bands, which are characterized by the states |−3/2h〉 and
|3/2h〉 [3,9]. The two degenerate conduction bands are
characterized by |−1/2e〉 and |1/2e〉. We assume that the
light is propagating in the z-direction and use the usual
dipole matrix elements [3,9]:

µ11
ij = δijµ0σ

+ = δij
µ0√

2

(
1
i

)
,

µ12
ij = µ21

ij = 0,

µ22
ij = δijµ0σ

− = δij
µ0√

2

(
1
−i

)
, (16)

where µ0 is the modulus of µ. Consistent with the tight-
binding description the optical transitions are assumed to
be diagonal in the site index. Furthermore, the typical se-
lection rules for zinc blende semiconductors are used, i.e.
circularly polarized allowed transitions |3/2h〉 → |1/2e〉
(µ11

ij ) and | − 3/2h〉 → | − 1/2e〉 (µ22
ij ). Due to these se-

lection rules we have two separate subspaces of states,
which are optically isolated but coupled by the many-body
Coulomb-interaction.

For small systems the above discussed equations for
p and B can be solved numerically without further ap-
proximations. For a schematical drawing of the transitions
described by the present model see Figure 1.

Considering an excitation with two optical pulses
and using the usual Fourier-expansion with respect
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Fig. 1. Schematical drawing of relevant dynamic variables.
p is the interband (single-exciton) coherence and B the two-
exciton amplitude. The superscripts label the involved electron
and hole bands. For further explanation see text.

to the pulse-directions [35] pump-probe and four-wave
mixing signals can be obtained. In first-order in the light
field only p11 and p22 can be excited. This is due to the
fact that the optical matrix elements for p12 and p21 vanish
and that in in the linear regime no coupling between the
subspaces of different spin states exists within our model.

In second-order in the light field, depending on the
polarization of the incident laser pulses, different types
of two-exciton states can be excited. If we consider two
interactions with two co-circularly polarized pulses, then
B1111 or B2222 are relevant. Bv

′c′vc
abcd is antisymmetric

with respect to interchanging the band and real-space in-
dices of the two electrons and the two holes, respectively,
i.e. Bvc

′v′c
cbad = Bv

′cvc′

adcb = −Bv′c′vcabcd . Since the contributions
of the two electrons and the two holes which enter into
B1111 and B2222 come from the same bands, the real-space
part of the corresponding B’s has to be antisymmetric.
Such two-exciton states typically do not include bound
states [3,9,14]. If we consider two interactions with op-
positely circularly polarized pulses, then B1122 and B2211

are created in second-order. For these B’s no definite sym-
metry for the real-space part of B exists, and therefore
the real-space part may be symmetric which does allow
for bound two-exciton states (biexcitons). In the numeri-
cal treatment it is sufficient to calculate only one B-term,
since the value of the other one can be determined using
the anti-symmetry B1122

abcd = B2211
cdab .

Due to the selection rules also in third-order p12

and p21 do not contribute to the optical response and
therefore within χ(3) the response is fully determined by
p11 and p22. If equations (10, 11) are projected onto a
few relevant single- and two-exciton states it is possible
to derive analytical formulae for the resonant nonlinear

optical response [3]. In Appendix A this is outlined for
a calculation of the differential absorption signals. This
analysis gives insight into the signatures of the differ-
ent optical nonlinearities in the differential absorption
spectra.

4 Numerical results for the homogeneous
system

We assume excitation with two pulses and use the rotating
wave approximation

E(t) = E1(t)e1ei(k1·r−ω1t) +E2(t)e2ei(k2·r−ω2t). (17)

Here E1(t) ∝ e−((t+τ)/t̄1)2
(E2(t) ∝ e−(t/t̄2)2

) denotes the
temporal envelope of the Gaussian pump (probe) pulse
which is centered at t = −τ (t = 0), e1 (e2) its polarization
direction, and ω1 (ω2) the central frequency. A positive
time delay τ corresponds to the pump pulse arriving before
the probe pulse. Equations (10, 11) are solved numerically
in the time-domain up to third-order in the optical field
(χ(3)). We then obtain δP(t, τ) [29,36], which is the time-
domain polarization in differential absorption geometry,
by considering all contributions which (i) propagate in the
direction of the probe pulse (E2), and (ii) include two
interactions with the pump pulse (E1) and are linear in the
probe pulse. Since the probe pulse is taken to be spectrally
broad the differential absorption can be determined via

δα(ω, τ) ∝ Im
[∫

dt(e2)∗ · δP(t, τ)eiωt

]
, (18)

where e2 denotes the polarization-direction of the probe
pulse.

The differential absorption spectra for resonant exci-
tation at the exciton resonance with co-circular polarized
pump and probe pulses, i.e. e1 = e2 = σ+, using a pump
pulse with t̄1 = 1 ps for different pump-probe time delays
are shown in Figures 2a, c, and e (note that the zero of the
energy scale is chosen to coincide with the energy of the
1s-exciton). The spectral width of the pump-pulse is much
narrower than the exciton binding energy of 15.1 meV. For
the probe pulse t̄2 = 10 fs has been used, corresponding to
a spectrally flat probe spectrum in the frequency region of
interest. For excitation with e1 = e2 = σ+ also δP(t, τ)
has the same polarization as the pulses. Figure 2a shows
δα(ω) for a positive delay of τ = 2 ps. The differential ab-
sorption is strictly negative in the vicinity of the exciton
resonance corresponding to a pump-pulse-induced bleach-
ing of the exciton resonance. The positive contributions
to δα(ω) are related to excited state absorption induced
by two-exciton states. For energies larger than the exciton
energy we see in Figure 2a two positive peaks indicating
some structure in the two-exciton continuum.

The total differential absorption can be written as
the sum of three contributions (see discussion following
Eq. (10) and Appendix A)

δα(ω, τ) = δαpb(ω, τ) + δαCI,1st(ω, τ) + δαCI,corr(ω, τ).
(19)
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Fig. 2. Differential absorption spectra for resonant excitation
at the exciton resonance with co-circular polarized pump (�+)
and probe (�+) pulses for different time delays. δα is displayed
in (a) for τ = 2 ps, (c) τ = 0 ps, and (e) τ = −2 ps. (b), (d),
and (f) shows the three contributions to δα: δαpb multiplied by
5 (solid), δαCI,1st (dashed), and δαCI,corr (dotted). Here and in
all following figures the 1s-exciton energy coincides with the
zero of the energy scale.

Here pb denotes the optical nonlinearity induced by Pauli-
blocking. The terms denoted with CI are due to Coulomb-
interaction-induced nonlinearities. CI,1st is the first-order
(Hartree-Fock) term, and CI,corr the higher-order correla-
tion contribution. These three contributions are displayed
separately in Figure 2b. It is shown that δαpb is weak
(note that it is multiplied by 5 in Fig. 2b) and corre-
sponds to a bleaching at the exciton resonance. δαCI,1st is
very strong and is antisymmetric around the exciton res-
onance (cp. Eq. (A.17)). Its dispersive shape corresponds
to a blue shift of the exciton. δαCI,corr is also mainly dis-
persive around the exciton resonance, but with opposite
sign compared to δαCI,1st, i.e. this term yields a red shift.
Besides contributions with resonances at the exciton en-
ergy, δαCI,corr also includes terms having resonances at the
energies of unbound two-exciton states (see Eq. (A.18)).
Therefore it is not completely antisymmetric around the
exciton resonance. When adding up these three contribu-
tions to obtain the total signal via equation (19), strong
cancellations occur between δαCI,1st and δαCI,corr and the

resulting differential absorption (Fig. 2a) shows a pre-
dominantly absorptive spectral shape around the exciton
resonance. As already indicated earlier when comparing
equations (10, 11) and equations (14, 15) (see also analyt-
ical results in Appendix A), part of δαCI,corr compensates
the first-order term δαCI,1st. Additionally δαCI,corr induces
some real correlation-contributions due to the presence
of two-exciton resonances and additionally participates in
the bleaching at the exciton (see Eq. (A.18)). In fact, the
bleaching at the exciton resonance in Figure 2a is domi-
nated by δαCI,corr and only weakly enhanced by δαpb.

For τ = 0, Figures 2c and d, we find differential ab-
sorption spectra that are qualitatively similar as those
at τ = 2 ps. The main differences can be attributed
to weak positive contributions for energies below the
exciton energy. These are related to the coherent oscil-
lations, which become very prominent for negative pump-
probe delays [36]. For τ = −2 ps, see Figure 2e, coherent
oscillations dominate the differential absorption spectra.
Figure 2f shows that they are present in all three con-
tributions. All of these numerical results can be analyzed
qualitatively on the basis of the analytical model results
presented in Appendix A.

We now consider excitation with oppositely circularly
polarized pulses e1 = σ+ and e2 = σ−. For this polariza-
tion geometry δαpb vanishes, and also δαCI,1st vanishes as
long as the system is homogeneous. This is due to the fact
that none of these contributions introduces any coupling
between the subspaces of different spin states. Therefore,
for this polarization geometry, the total signal is identi-
cal to the correlation contribution, δP = δP|CI,corr. Using
equation (A.11) it can be easily shown that δP|CI,corr is
σ− polarized as the probe pulse. We obtain the spectra
displayed by the solid lines in Figures 3a, c, and e. For
positive and zero delay (Figs. 3a and c) we again find
(negative) bleaching at the exciton and (positive) excited-
state absorption due to transitions to two-exciton states.
Whereas for co-circular polarized excitation only contri-
butions from unbound two-exciton states are present, now
there is a clear signature of a bound biexciton in the differ-
ential absorption spectra, appearing about 2.7 meV below
the excitonic resonance. For negative delay, see Figure 3e,
also in this case coherent oscillations appear. Again, these
numerical results can be understood on the basis of the
analytical results presented in Appendix A.

We now discuss the influence of detuning of the pump
pulse below the exciton resonance for co-circular polar-
ized excitation. Figure 4 shows the resulting differential
absorption spectra for various detunings of −1.51 meV,
−3.02 meV, −7.5 meV, and −22.6 meV of the pump-
pulse energy below the exciton energy. The higher de-
tunings (−7.5 meV and −22.6 meV) are much larger
than both the spectral width of the pump pulse and the
homogeneous width of the exciton resonance The solid
line gives the full δα, whereas the dashed line gives the
result within the time-dependent Hartree-Fock approx-
imation where correlations are neglected, i.e. δαHF =
δαpb + δαCI,1st. With increasing detuning the bleaching
at the exciton resonance develops into a dispersive shape
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Fig. 3. Differential absorption spectra for resonant excitation
at the exciton resonance with opposite circular polarized pump
(�+) and probe (�−) pulses for different time delays. δα is
displayed in (a) for τ = 2 ps, (b) τ = 0 ps, and (c) τ = −2 ps.

corresponding to a blue-shift [36]. Furthermore it is shown
in Figure 4 that the importance of the carrier-correlations
diminishes rapidly with increasing detuning. We thus
conclude that the time-dependent Hartree-Fock approx-
imation gives a good description for this polarization-
configuration as long as off-resonant excitation is
considered.

5 Numerical results including energetic
disorder

Now we discuss results for our model system where we
additionally include disorder effects. We implement spa-
tial energetic disorder by assuming a Gaussian distribu-
tion of the electron site energy εc, while the hole energies
εv remain unchanged, i.e. ordered. To achieve sufficient
convergence, the numerical results are averaged over 120
realizations for a disorder of 2.35 meV (full width at half
maximum of the Gaussian distribution) and over 180 re-
alizations for a disorder of 4.70 meV, respectively.

Figure 5 shows the numerical results considering ex-
citation at the energetic position of the disorder-free ex-
citon. First the results for co-circular polarized exciting
pulses are discussed. Figure 5a displays δα for τ = −2 ps
without disorder (solid), with a disorder of 2.35 meV
(dashed), and with a twice as strong disorder (dotted).
It is shown that the amplitudes of the coherent oscilla-
tions which dominate the signal of the perfect sample are
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D
ifferential absorption (arb. units)
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Fig. 4. Differential absorption spectra for various detunings of
the pump pulse below the exciton resonance with co-circular
polarized pump and probe pulses for zero time-delay. The cen-
tral frequency of the pump pulse is chosen (a) −1.51 meV,
(b) −3.02 meV, (c) −7.5 meV, and (d) −22.6 meV below
the energy of the 1s-exciton. The solid line gives the full δα,
and the dashed line the result of a Hartree-Fock calculation
(δαpb + δαCI,1st) neglecting correlations (δαCI,corr).

strongly reduced with increasing disorder. This can be
simply understood by the fact that the disorder partially
acts as an inhomogeneous broadening. If the coherent os-
cillations are averaged over an inhomogeneous distribution
with a width comparable to or larger than the energetic
period of the coherent oscillations, the resulting δα be-
comes much smaller. Figure 5c displays δα for τ = 2 ps.
One can identify that the disorder induces the expected
red-shift of the maximum of the bleaching as well as some
broadening of the exciton line. Furthermore, the two-peak
structure in the excited-state absorption present for the
ordered case, is averaged out with increasing disorder. The
general lineshape of δα for excitation with co-circular po-
larized pulses, i.e. a bleaching at the exciton resonance
and excited state absorption for higher energies induced
by unbound two-exciton states, however, survives even in
the presence of disorder. The three contributions to δα
for τ = 2 ps and strong disorder are displayed separately
in Figure 5e. As in the ordered case both δαCI,1st and
δαCI,corr are quite large and strongly cancel each other.
Compared to the ordered case δαpb becomes relatively
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Fig. 5. Differential absorption spectra for resonant excitation
at the exciton resonance. (a) co-circular polarized pump and
probe pulses and τ = −2 ps, solid: ordered system, dashed:
2.35 meV (FWHM) Gaussian disorder, dotted: 4.70 meV Gaus-
sian disorder. (b) same as (a) for opposite circular polarized
pump and probe pulses. (c) same as (a) for τ = 2 ps. (d) same
as (b) for τ = 2 ps. (e) shows the three contributions to δα
displayed in (c): δαpb (solid), δαCI,1st (dashed), and δαCI,corr

(dotted). (f) shows the two contributions to δα displayed in
(d): δαCI,1st (dashed), and δαCI,corr (dotted).

larger, and for these present parameters is responsible for
about half of the bleaching at the exciton resonance.

Next, we discuss the results obtained for oppositely cir-
cularly polarized pump-probe pulses. Figure 5b displays
δα for τ = −2 ps without disorder (solid), with a disorder
of 2.35 meV (dashed), and with a twice as strong disorder
(dotted). As in Figure 5a, also Figure 5b shows that the co-
herent oscillations are strongly suppressed by the disorder.
Figure 5d displays δα for τ = 2 ps. As in Figure 5c, one can
identify that the disorder induces the expected red-shift of
the maximum of the bleaching as well as some broadening
of the exciton line. Also the positive low-energy biexciton
peak, which in the ordered case appears 2.7 meV below
the excitonic resonance, shifts towards lower energies and
is broadened. The energetic shift of the biexciton line is ap-
proximately twice as large as the shift of the exciton. Even
for the strongest disorder of 4.70 meV considered here,
which is larger than the biexciton binding energy, there is
still a pronounced biexciton peak present in δα. This is

consistent with time-integrated four-wave-mixing experi-
ments [12], which reported pronounced exciton-biexciton
beats in extremely strong disordered quantum-well
samples.

It can thus be concluded, that for the model and
parameters investigated here, the disorder, besides some
red-shifting of both the exciton as well as the biexciton
contributions, mainly induces a correlated inhomogeneous
broadening of the one- and two-exciton states. The two
contributions (for the present case of disorder plus exci-
tation with oppositely circularly polarized pulses we have
δα = δαCI,1st + δαCI,corr, since δαpb vanishes) to δα for
τ = 2 ps and strong disorder are displayed separately
in Figure 5f. The first-order Coulomb contribution which
vanishes in the ordered case, becomes finite with disorder.
Compared to the correlation contribution it is, however,
quite small.

6 Numerical results for a homogeneous
system placed inside a microcavity

The microcavity system consists of two distributed Bragg
mirrors with alternating GaAs/AlAs λ

4 -layers (index of
refraction n = 3.61 and n = 2.95, respectively) on a GaAs-
substrate. The 3

2λ spacing between the mirrors leads to
two anti-nodes inside the cavity [37]. The semiconductor
material, that resonantly interacts with the cavity field,
is placed at one of these anti-nodes where it is supposed
to be excited homogeneously. The frequency of the cavity
mode is chosen to coincide with the 1s-exciton resonance
of the system. The strong coupling between the cavity
mode and the exciton leads to the so-called normal-mode
splitting [23].

The propagation of the pulses along the cavity is mod-
eled as in reference [24] using the transfer matrix tech-
nique. The pump-probe signal is calculated for resonant
excitation where the pump frequency is equal to the free-
cavity and free-exciton frequencies assuming zero delay
τ = 0 between the pulses. We separately determine the
propagation of the fields in k1 (pump) direction, as well as
first- and third-order components of the field in k2 (probe)
direction. In the spectrum of the frequency-domain re-
flected field ER(ω) in probe-direction k2 we distinguish
between linear and third-order nonlinear contributions,

ER(ω) = E(1)
R (ω) + aE(3)

R (ω), (20)

where a depends on the intensity of the pump pulse and is
chosen such that the third-order field aE(3)

R (ω) causes only
a small change of the linear field E(1)

R (ω). To determine
the strength of the third-order term, one can compare
the total intensity |ER(ω)|2 at the normal-mode peaks
with the first order contribution |E(1)

R (ω)|2. The reflection
R(ω) = |ER(ω)|2/|E0(ω)|2 is normalized with respect to
the spectrum of the applied probe field and the differen-
tial reflection δR(ω) is given by the difference of the total
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Fig. 6. (a) Probe-reflection R(ω) (solid) and linear probe-
reflection R(1)(ω) (dotted) for excitation with co-circularly po-
larized pump and probe pulse and τ = 0 ps. Note that R(1)(ω)
is shifted by 0.1. (b) Resulting differential reflection δR(ω) (In-
set: calculation of the differential reflection without correla-
tions, i.e. in Hartree-Fock approximation, using the same hor-
izontal scale). (c) and (d) shows the same as (a) and (b) for
cross-circularly polarized pump and probe pulses and τ = 0 ps.

reflection and the linear reflection,

δR(ω) =
|ER(ω)|2 − |E(1)

R (ω)|2
|E0(ω)|2 · (21)

Taking the third-order field amplitude to be much smaller
than the first-order one and assuming a short, i.e. spec-
trally broad, probe pulse results in

δR(ω) ∝ Re
[
E(1)
R (ω)∗E(3)

R (ω)
]
. (22)

For our numerical analysis, we use 14 and 16.5 mirror
layer pairs for the top and bottom mirror, respectively. In
this section the electronic parameters of the semiconduc-
tor model system are modified (U0 = 8 meV, Jc = 8 meV
and Jv = 0.8 meV, i.e. the energetic parameters are
simply multiplied by 8/15 compared to the two previous
sections). The resulting reduced exciton binding energy of
EX = 8.0 meV is similar to that of the experimental sys-
tem studied in reference [27]. With these parameters the
biexciton binding energy EBX is about 1.4 meV.

The LHS of Figure 6 shows the microcavity reflectivity
spectrum for co-circular (σ+σ+) excitation with a tempo-
ral width of the pump pulse t̄1 = 1 ps. In Figure 6a,
the reflections with and without pump are compared,
showing that the effect of the third-order contributions
is small so that the χ(3) treatment is valid. Note that the
spectra have been shifted with respect to each other in
order to show the dashed lines. Figure 6b displays the
resulting differential reflection δR(ω). While the energet-
ically higher normal-mode peak exhibits bleaching, the
lower peak shifts blue, giving rise to an overall decrease of
the normal-mode splitting. The inset shows that this shift
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Fig. 7. Total probe-reflection R(ω) (solid) and linear probe-
reflection R(1)(ω) (dotted) using cross-circularly polarized
pump and probe pulses and τ = 0 ps. Two different normal-
mode splittings of about 4 meV in (a) and 6 meV (b) are
considered.

remains when the calculation is performed without corre-
lations, i.e., in Hartree-Fock approximation. In this ap-
proximation, however, also the bleaching of the upper
peak becomes a blue shift as well. This demonstrates that
also inside a microcavity the correlation effects exhibit
characteristic signatures. In Figures 6c and d we show the
results for cross-circular (σ+σ−) excitation. Note that also
within the cavity, for this choice of polarizations the sig-
nal is solely due to correlations. Again, we find bleaching
of the upper, and a dispersive shape at the lower reso-
nance; this time, however, corresponding to a red shift
and therefore an increase of the normal-mode splitting.
Qualitatively, these results agree well with the experi-
mental findings of Fan et al. [27], which were performed
on quantum-wells. For the cross-circular polarization we
find additional structure in the differential reflection spec-
tra, presented in Figure 6d, which are analyzed in the
following.

In order to be able to more clearly investigate the peak
structure appearing for cross-circular polarization the pa-
rameters are modified as follows: The reflectivity of the
mirrors is reduced by changing the number of top and
bottom layer pairs to 10 and 12.5, respectively. Further-
more, the dephasing times are doubled (γ−1

p = 6 ps and
γ−1
B = 3 ps) and, finally, excitation with a short pump

pulse (t̄1 = 100 fs) is assumed.
In Figure 7, full reflection spectra (solid) for σ+σ−-

excitation are shown in comparison to the linear spec-
tra (dashed) (note that in Fig. 7 the same constant a
is used as in Fig. 6). In Figure 7a, the normal-mode
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splitting was taken to be the same as in Figure 6, while
in (b) it has been enhanced by enlarging the dipole ma-
trix element µ0. The peak in between the normal-mode
resonances, which is also present in Figure 6d, is some-
what stronger for the present parameters. Furthermore, in
Figures 7a and b a similar shoulder can be seen below
the lower normal-mode resonance. In Figures 7a and b
the energetic distance of these peaks to the normal-mode
resonances coincides with the biexciton binding energy.
This appearance of biexcitons in the reflection spectra is
to be expected on the basis of our model. Since the field
inside the cavity is in resonance with the exciton their
coupling leads to the normal-mode splitting giving rise
to two resonances. The two-exciton states, however, are
not directly coupled to the cavity field and thus remain
unchanged inside the cavity (no biexciton normal-mode
coupling exists). Therefore, the biexciton should show up
one biexciton binding energy below both normal-mode-
coupled resonances, as is shown in Figures 7a and b. An-
other feature that can be seen in Figure 7b is connected
to the intensity of the peaks. Whereas the dip in the re-
flection at the lower normal-mode resonance is stronger
than at the upper normal-mode resonance, the intensity of
the biexciton-induced features appearing below these res-
onances behave oppositely. This can be rationalized as fol-
lows: the normal-mode splitting is about four times larger
than the biexciton binding energy, therefore the frequency
difference between the upper normal-mode resonance and
the biexciton is close to the frequency of the lower reso-
nance, and vice versa. Thus, when the pump excites the
upper normal-mode resonance, a probe frequency close to
the lower resonance is needed in order to spectrally excite
the biexciton. This explains the obvious reversal of the in-
tensities of the biexciton-induced peaks, seen in Figure 7b.

7 Summary

A theoretical analysis of the influence of carrier corre-
lations and disorder on excitonic differential absorption
spectra is presented. Numerical results within the coher-
ent χ(3)-limit are obtained for a one-dimensional model
allowing us to fully include Coulomb-induced carrier-
correlations and to treat bound and unbound two-exciton
states on equal footing. For resonant excitation at the ex-
citon resonance we find significant modifications due to
the Coulomb correlations. For resonant excitation with
co-circularly polarized pulses part of the correlation con-
tributions are shown to cancel first-order Coulomb contri-
butions. The resulting differential absorption spectra show
for positive delays bleaching of the exciton and excited-
state absorption induced by unbound two-excitons. For
negative delays the differential absorption spectra are
dominated by the well-known coherent oscillations. When
the pump pulse is detuned below the exciton resonance,
the correlations are shown to become unimportant for co-
circularly polarized pulses. For excitation with opposite
circularly polarized pump and probe pulses the differen-
tial absorption is solely due to the Coulomb-correlations

Fig. 8. Schematical drawing of the reduced system considered
in Appendix A.

which lead to a coupling between the subspaces of differ-
ent spin states. In the differential spectra we find positive
signatures from both bound (biexciton) and unbound two-
exciton states, as well as bleaching signatures at the ex-
citonic resonance for positive delays. For negative delays
again coherent oscillations appear.

With energetic disorder the coherent oscillations for
negative delays are strongly reduced in amplitude. For
positive delays with disorder the bleaching peak at the ex-
citon resonance red shifts and broadens. The biexcitonic
excited state absorption peak below the exciton resonance
red shifts about twice as much as the excitonic resonance
and also broadens. The two-peak structure of the excited
state absorption which indicates structure in the contin-
uum of two-exciton states vanishes due to the disorder-
induced broadening.

When the excitonic system is placed inside a micro-
cavity we find a strong polarization dependence of the
differential reflection signal. The calculated signatures ap-
pearing at the upper and lower exciton-cavity modes are
in good agreement with recent experiments [27]. Addition-
ally, our calculations reveal further correlation-induced
contributions, representing additional resonances associ-
ated with excitation of the biexciton, in the differen-
tial reflection which should be observable in high-quality
samples.
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Appendix A: Analytical results for simplified
model

In this Appendix we project the full equations for p11,
p22, B1111, B2222, and B1122 onto the respective single
relevant states, as is shown schematically in Figure 8.
For p11 this state is called p+, which is the 1s exciton
that can be excited with σ+ polarized light. Similarly,
we project p22 onto p−, which can be excited with σ−
polarized light. Both p+ and p− refer to the 1s exciton
and have the same frequency εx.

A similar projection onto B++ and B−− for B1111 and
B2222 is performed. As pointed out above, for excitation
with two co-circularly polarized pulses typically no bound
biexcitons are excited, therefore B++ and B−− represent
in this case unbound two-exciton states with frequencies
ε2x > 2εx. For B1122 we introduce B+− to represent a
biexciton with frequency εbx < 2εx.

The simplified level scheme given by Figure 8 is
different to the one used in reference [9]. First, instead of
just the biexciton also unbound two-exciton states (B1111

and B2222) are included. Second, within the microscopic
density matrix theory the interband polarization P is de-
termined purely by the interband coherence p, whereas in
reference [9] also the transitions from the excitons to the
biexciton contributed to the polarization. Instead of using
density matrix theory the scheme used in reference [9]
corresponds to expressing the optical response using the
many-body eigenstates of the system. Within this picture
the optical response is expressed using the energies and
transitions between the many-body eigenstates [38].

Projecting equations (10, 11) onto the states described
above results in the following equations of motion (see
also Ref. [3] where similar equations have been derived
[39])

−i∂tp+ = −(εx − iγx)p+ + E · (σ+)∗(φ(0)∗ − 2b|p+|2)

− V (p+|p+|2) + Ṽ (p+|p−|2)

− VBB+−(p−)∗ + ṼBB
++(p+)∗, (A.1)

−i∂tp− = −(εx − iγx)p− + E · (σ−)∗(φ(0)∗ − 2b|p−|2)

− V (p−|p−|2) + Ṽ (p−|p+|2)

− VBB+−(p+)∗ + ṼBB
−−(p−)∗, (A.2)

−i∂tB++ = −(ε2x − iγ2x)B++ + p+p+, (A.3)

−i∂tB−− = −(ε2x − iγ2x)B−− + p−p−, (A.4)

and

−i∂tB+− = −(εbx − iγbx)B+− + p+p−. (A.5)

A number of quantities has been defined in equa-
tions (A.1–A.5): φ(0) is the value of the exciton

wavefunction at the origin which describes the excitonic
enhancement of the optical transition [29]. Phenomeno-
logical dephasing rates γ have been introduced. Since
B refers to the correlated part of a general four-point
quantity, where uncorrelated contributions proportional
to p2 have been removed, one should use γ2x = γbx = 2γx
to be consistent. The quantities b, V , Ṽ , VB , and ṼB
are the optical nonlinearities. b denotes the Pauli-
blocking [3,35,40]. V represents the Coulomb interaction
between excitons with the same spin [3,35,40]. Ṽ is simi-
lar but describes the interaction between excitons with
opposite spin, which vanishes in a homogeneous system.
VB is the nonlinearity related to the Coulomb-induced
coupling between excitons and the biexciton [3], and
ṼB is the corresponding quantity related to an unbound
two-exciton state. V and Ṽ are of first-order in the
Coulomb interaction, whereas the contributions VB and
ṼB are of higher-order. Expressions for these parameters
can be obtained simply by explicitly performing the
projections of the equations (10, 11) onto the considered
single- and two-exciton states [3,35].

Within the simplified model the total polarization P
is given by

P = φ(0)(σ+p+ + σ−p−). (A.6)

In the following we summarize our analytical results
obtained for the time-domain signal in differential ab-
sorption geometry. For this purpose we calculate all
contributions to δP, i.e. to p+ and p−, which propa-
gate in the direction the probe pulse (E2), and which
include two interactions with the pump pulse (E1) and
are linear in the probe pulse. We assume δ-pulse excitation

E(t) = δ(t+ τ)(e1eik1·r + (e1)∗e−ik1·r)

+δ(t)(e2eik2·r + (e2)∗e−ik2·r), (A.7)

where a positive time delay τ corresponds to the pump
pulse arriving before the probe pulse.

The total differential polarization δP(t, τ) can be
written as a sum of three terms originating from different
optical nonlinearities

δP(t, τ) = δPpb(t, τ) + δPCI,1st(t, τ) + δPCI,corr(t, τ).
(A.8)

Here pb denotes the Pauli-blocking and CI refers to
the Coulomb-induced optical nonlinearities which ap-
pear in first order within time-dependent Hartree-Fock
approximation (CI,1st) and in higher-order due to
correlation-induced contributions (CI,corr). Introducing
abbreviations for the appearing scalar products between
the pulse directions e1 and e2 and the transition dipoles
σ+ and σ− by defining e+

i = ei ·σ+ and e−i = ei ·σ−, the
three terms contributing to the pump-probe signal are
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δPpb(t, τ) = −2ib|φ(0)|2[σ+e−1 (e−1 )∗e−2 + σ−e+
1 (e+

1 )∗e+
2 ]

×
(
Θ(τ)Θ(t)e−2γxτe(−iεx−γx)t +Θ(−τ)Θ(t + τ)e(−iεx−γx)t

)
. (A.9)

δPCI,1st(t, τ) = |φ(0)|2φ(0)∗
(
V [σ+e−1 (e−1 )∗e−2 + σ−e+

1 (e+
1 )∗e+

2 ]− Ṽ [σ+e+
1 (e+

1 )∗e−2 + σ−e−1 (e−1 )∗e+
2 ]
)

×
(
Θ(τ)Θ(t)e−2γxτ e(−iεx−γx)t 1− e−2γxt

2γx
+Θ(−τ)Θ(t + τ)e(−iεx−γx)t 1− e−2γx(t+τ)

2γx

)
.

(A.10)

δPCI,corr(t, τ) = |φ(0)|2φ(0)∗ṼB
[
σ+e−1 (e−1 )∗e−2 + σ−e+

1 (e+
1 )∗e+

2

]
×
(
Θ(τ)Θ(t)

e−2γxτ

ε2x − 2εx + i(2γx − γ2x)
e(−iεx−γx)t

(
−1− e−2γxt

2γx
+ i

1− e(i(2εx−ε2x)−γ2x)t

((2εx − ε2x) + iγ2x)

)
+Θ(−τ)Θ(t + τ)

1
ε2x − 2εx + i(2γx − γ2x)

e(−iεx−γx)(t+τ)

×
(
−1− e−2γxt

2γx
+ i

1− e(i(2εx−ε2x)−γ2x)t+(i(2εx−ε2x)−γ2x)τ

((2εx − ε2x) + iγ2x)

))
−|φ(0)|2φ(0)∗VB

[
σ+(e+

1 )∗[e+
1 e
−
2 + e−1 e

+
2 ] + σ−(e−1 )∗[e−1 e

+
2 + e+

1 e
−
2 ]
]

×
(
Θ(τ)Θ(t)

e−2γxτ

εbx − 2εx + i(2γx − γbx)
e(−iεx−γx)t

(
−1− e−2γxt

2γx
+ i

1− e(i(2εx−εbx)−γbx)t

((2εx − εbx) + iγbx)

)
+Θ(−τ)Θ(t + τ)

1
εbx − 2εx + i(2γx − γbx)

e(−iεx−γx)(t+τ)

×
(
−1− e−2γxt

2γx
+ i

1− e(i(2εx−εbx)−γbx)t+(i(2εx−εbx)−γbx)τ

((2εx − εbx) + iγbx)

))
. (A.11)

given by For positive time-delay δPpb(t, τ) decays with
e−2γxτ , since the pump pulse creates two polarizations p
and p∗ which decay during the time interval τ . The factor
e(−iεx−γx)t originates from the polarization created by the
probe field at t = 0. Exactly the same terms (e−2γxτ and
e(−iεx−γx)t) appear in the expressions for δPCI,1st(t, τ)
and δPCI,corr(t, τ). In δPpb no mixing between the
excitons with different polarizations occurs. The same is
true for the term proportional to V in δPCI,1st. Apart
from a different complex prefactor (V instead of −2ib)
and the rising envelope ((1 − e−2γxt)/(2γx)) this term is
identical to the δPpb. The time-dependence of the term
proportional to Ṽ in δPCI,1st is identical to the term
proportional to V , they, however, have different selection
rules. Ṽ introduces a coupling between the excitons
with different polarizations, which may be be finite in
an inhomogeneous (for example disordered) system, but
vanishes in a homogeneous system.

Classifying the contributions to δPCI,corr(t, τ) with
respect to the selection rules, the term proportional to ṼB

introduces no coupling between the excitons with different
polarizations, whereas the term proportional to VB does.
Concerning the temporal-evolution, δPCI,corr includes
two types of terms. The first one is, apart from a prefactor
−1/(εxx−2εx+i(2γx−γxx)) (here xx stands for 2x or bx),
identical to the first-order Coulomb-contribution. This
term induces strong cancellations of the first-order con-
tribution. (as is also concluded comparing Eqs. (10, 11)
and Eqs. (14, 15)). The second term is proportional
to i(1 − e(i(2εx−εxx)−γxx)t)/(((2εx − εxx) + iγxx)) and
introduces the two-exciton energies explicitly into the
temporal evolution.

A Fourier-transform of the time-domain results

δP(ω, τ) =
∫

dteiωtδP(t, τ), (A.12)

gives the τ dependent frequency-domain differential
polarization δP(ω, τ). After projecting onto the probe
polarization and assuming a spectrally broad probe pulse,
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we obtain

δχ(ω, τ) ∝ e∗2 · δP(ω, τ). (A.13)

Hence, δP is proportional to the differential susceptibility
δχ, whose imaginary part determines the differential
absorption δα [29]

δα(ω, τ) ∝ Im[δχ(ω, τ)] ∝ Im[e∗detect · δP(ω, τ)]. (A.14)

Similarly to δP, see equation (A.8), δα can be written as
a sum of three contributions

δα(t, τ) = δαpb(t, τ) + δαCI,1st(t, τ) + δαCI,corr(t, τ).
(A.15)

For the analysis of the differential absorption spectra
we concentrate on the time-dependent terms contained
in equations (A.9–A.11). Furthermore, we assume that
the polarization direction of δP is the same as the
polarization direction of the probe pulse e2, which is
fulfilled for co- and opposite circular polarized excitation
as can easily be verified using equations (A.9–A.11). We
start this discussion considering positive τ . For δαpb we get

δα(ω, τ)|pb,τ>0 ∝ Im[
∫ ∞

0

dt− ie−2γxτe(−i(εx−ω)−γx)t]

= e−2γxτ −γx
(εx − ω)2 + γ2

x

· (A.16)

This term simply describes a bleaching of the exciton
resonance caused by the excitation of the pump
pulse [29,36,41]. For the δαCI,1st term we get

δα(ω, τ)|CI,1st,τ>0 ∝

Im[
∫ ∞

0

dte−2γxτe(−i(εx−ω)−γx)t 1− e−2γxt

2γx
] =

e−2γxτ
1

2γx

(
−(εx − ω)

(εx − ω)2 + γ2
x

− −(εx − ω)
(εx − ω)2 + 9γ2

x

)
.

(A.17)

This is the well-known blue-shift of the excitonic reso-
nance which in a Hartree-Fock calculation for resonant
excitation dominates over the bleaching induced by the
Pauli-blocking [29,41,42]. The different spectral shape of
δα|pb,τ>0 and δα|CI,1st,τ>0 originates from the imaginary
prefactor −i contained in δPpb that is not contained in
δPCI,1st.

Assuming 2γx = γxx (here xx stands for 2x or
bx, compare Eq. (A.11)) which makes the prefactor
1/(εxx− 2εx + i(2γx− γxx)) appearing in equation (A.11)
real, we get for δαCI,corr

δα(ω, τ )|CI,corr,τ>0 ∝ Im

"
−
Z ∞

0

dte−2γxτe(−i(εx−ω)−γx)t

×
�
−1− e−2γxt

2γx
− 1− e(i(2εx−εxx)−γxx)t

(i(2εx − εxx)− γxx)

�#
= e−2γxτ 1

2γx

×
�
− (εx − ω)

(εx − ω)2 + γ2
x

− −(εx − ω)

(εx − ω)2 + 9γ2
x

�

− e−2γxτ

�
1

((2εx − εxx)2 + γ2
xx)

�
(ω − εx)γx − (εxx − 2εx)γx

(εx − ω)2 + γ2
x

− (ω − εxx + εx)γx − (εxx − 2εx)(γx + γxx)

(εxx − εx − ω)2 + (γx + γxx)2

��
. (A.18)

The first two terms of δαCI,corr are just the negative of
δαCI,1st, which confirms that the first-order terms are
canceled by the higher-order correlations, as has been
discussed following equations (14, 15). The last two
terms of δαCI,corr explicitly include the energies of the
two-exciton states. The first one has its resonances at the
exciton energy εx and its spectral shape in the vicinity
of εx corresponds to a bleaching. The last term has its
resonances at the difference between the energies of the
single-exciton and two-exciton εxx− εx and in the vicinity
of εxx − εx has an absorptive shape leading to a positive
contribution to δα. This positive contribution corresponds
to induced absorption (or excited-state absorption) due
to the presence of single- to two-exciton transitions [43].

We now consider negative τ . For δαpb term we get

δα(ω, τ)|pb,τ<0 ∝ Im[
∫ ∞
−τ

dt− ie(−i(εx−ω)−γx)t] =

e−γx|τ |
−γx cos((εx − ω)τ)− (εx − ω) sin((εx − ω)τ)

(εx − ω)2 + γ2
x

·

(A.19)

As function of |τ | δαpb decays with γx, because the
polarization induced by the probe pulse (which comes
first for τ < 0) decays during the time period |τ | before
the pump pulse is incident on the sample. The coherent
oscillations present in δαpb originate from the scattering
of the pump pulse of the grating created by both pump
and probe pulses into the probe direction [36]. The period
of these oscillations is inversely proportional to |τ | and
develops into the (non-oscillating) bleaching for |τ | → 0
(see Eq. (A.19)) [36].
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The Coulomb-induced contributions are given by

δα(ω, τ)|CI,1st,τ<0 ∝

Im

[∫ ∞
−τ

dte−2γxτe(−i(εx−ω)−γx)t 1− e−2γxt

2γx

]
= e−γx|τ |

1
2γx

×
[
cos((εx − ω)τ)

(
−(εx − ω)

(εx − ω)2 + γ2
x

− −(εx − ω)
(εx − ω)2 + 9γ2

x

)

+ sin((εx − ω)τ)
(

γx
(εx − ω)2 + γ2

x

− 3γx
(εx − ω)2 + 9γ2

x

)]
,

(A.20)

δα(ω, τ)|CI,corr,τ<0 ∝

Im

[
−
∫ ∞
−τ

dte−2γxτ e(−i(εx−ω)−γx)t

×
(
−1− e−2γxt

2γx
− 1− e(i(2εx−εxx)−γxx)t

(i(2εx − εxx)− γxx)

)]
= e−γx|τ |

1
2γx

× cos((εx − ω)τ)
(
−(εx − ω)

(εx − ω)2 + γ2
x

− −(εx − ω)
(εx − ω)2 + 9γ2

x

)
− e−γxτ cos((εx − ω)τ)

1
(2εx − εxx)2 + γ2

xx

×
(
−(εx − ω)γxx − (εxx − 2εx)γx

(εx − ω)2 + γ2
x

−−(εxx − εx − ω)γxx − (εxx − 2εx)(γx + γxx)
(εxx − εx − ω)2 + (γx + γxx)2

)
+ e−γx|τ |

1
2γx

sin((εx − ω)τ)

×
(

γx
(εx − ω)2 + γ2

x

− 3γx
(εx − ω)2 + 9γ2

x

)
− e−γxτ sin((εx − ω)τ)

1
(2εx − εxx)2 + γ2

xx

×
(
γxγxx − (εxx − 2εx)(εx − ω)

(εx − ω)2 + γ2
x

−γxx(γx + γxx)− (εxx − 2εx)(εxx − εx − ω)
(εxx − εx − ω)2 + (γx + γxx)2

)
. (A.21)

Also in δαCI,1st and δαCI,corr similar spectral oscillations
are present as in δαpb.
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Phys. Rev. Lett. 78, 1319 (1997); P. Kner, W. Schäfer, R.
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J. Kuhl, T. Meier, A. Schulze, M. Lindberg, S.W. Koch,
P. Thomas, J. Opt. Soc. Am. B 13, 1026 (1996).

12. T.F. Albrecht, K. Bott, T. Meier, A. Schulze, M. Koch,
S.T. Cundiff, J. Feldmann, W. Stolz, P. Thomas, S.W.
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